Blowup for a Time - Oscillating Nonlinear Heat Equation
نویسنده
چکیده
In this paper, we study a nonlinear heat equation with a periodic timeoscillating term in factor of the nonlinearity. In particular, we give examples showing how the behavior of the solution can drastically change according to both the frequency of the oscillating factor and the size of the initial value.
منابع مشابه
Excluding blowup at zero points of the potential by means of Liouville-type theorems
We prove a local version of a (global) result of Merle and Zaag about ODE behavior of solutions near blowup points for subcritical nonlinear heat equations. As an application, for the equation ut = ∆u+V (x)f(u), we rule out the possibility of blowup at zero points of the potential V for monotone in time solutions when f(u) ∼ u for large u, both in the Sobolev subcritical case and in the radial ...
متن کاملBlow-up in Nonlinear Heat Equations
In this paper we study the blowup problem of nonlinear heat equations. Our result show that for a certain family of initial conditions the solution will blowup in finite time, the blowup parameters satisfy some dynamics which are asymptotic stable, moreover we provide the remainder estimates. Compare to the previous works our approach is analogous to one used in bifurcation theory and our techn...
متن کاملar X iv : m at h / 06 09 16 1 v 1 [ m at h . A P ] 6 S ep 2 00 6 Blow - up in Nonlinear Heat Equations
We study the blow-up problem for the one-dimensional nonlinear heat equations (or the reaction-diffusion equations) of the form u t = ∂ 2 x u + |u| p−1 u u(x, 0) = u 0 (x) (1) with p > 1. Equation (1) arises in the problem of heat flow and the theory of chemical reactions. Similar equations appear in the motion by mean curvature flow (see [38]), vortex dynamics in superconductors (see [8, 27]),...
متن کاملDomain Decomposition: a Blowup Problem and the Ginzburg{landau Equations
In two of our recent projects, the technique of domain decomposition plays a crucial role in the numerical integration of the partial diierential equations. In our problems, the local behavior varies because of the nonlinear and singular nature of the equations. Attempts to introduce diierent length scales did not lead to improvement. We found that diierent forms of the equations have to be use...
متن کاملOn the Blowup for the L-critical Focusing Nonlinear Schrödinger Equation in Higher Dimensions below the Energy Class
We consider the focusing mass-critical nonlinear Schrödinger equation and prove that blowup solutions to this equation with initial data in H(R), s > s0(d) and d ≥ 3, concentrate at least the mass of the ground state at the blowup time. This extends recent work by J. Colliander, S. Raynor, C. Sulem, and J. D. Wright, [13], T. Hmidi and S. Keraani, [21], and N. Tzirakis, [36], on the blowup of t...
متن کامل